## TSP using Branch and Bound Searching Strategies

## Introduction :The traveling salesperson optimization problem

- Given a graph, the TSP Optimization problem is to find a tour, starting from any vertex, visiting every other vertex and returning to the starting vertex, with minimal cost.
- It is NP-hard.
- We try to avoid n ! exhaustive search by the branch-and-bound technique on the average case. (Recall that $\mathrm{O}(\mathrm{n}!)>0\left(2^{n}\right)$.)


## The traveling salesperson optimization problem

- E.g. A Cost Matrix for a Traveling Salesperson Problem.

| j | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{i}$ |  |  |  |  |  |  |  |
| 1 | $\infty$ | 3 | 93 | 13 | 33 | 9 | 57 |
| 2 | 4 | $\infty$ | 77 | 42 | 21 | 16 | 34 |
| 3 | 45 | 17 | $\infty$ | 36 | 16 | 28 | 25 |
| 4 | 39 | 90 | 80 | $\infty$ | 56 | 7 | 91 |
| 5 | 28 | 46 | 88 | 33 | $\infty$ | 25 | 57 |
| 6 | 3 | 88 | 18 | 46 | 92 | $\infty$ | 7 |
| 7 | 44 | 26 | 33 | 27 | 84 | 39 | $\infty$ |

## The basic idea

- There is a way to split the solution space (branch)
- There is a way to predict a lower bound for a class of solutions. There is also a way to find a upper bound of an optimal solution. If the lower bound of a solution exceeds the upper bound, this solution cannot be optimal and thus we should terminate the branching associated with this solution.


## Splitting

- We split a solution into two groups:
- One group including a particular arc
- The other excluding the arc
- Each splitting incurs a lower bound and we shall traverse the searching tree with the "lower" lower bound.


## The traveling salesperson optimization problem

- The Cost Matrix for a Traveling Salesperson Problem.

Step 1 to reduce: Search each row for the smallest value


Step 2 to reduce: Search each column for the smallest value The traveling salesperson
optimization problem

- Reduced cost matrix:

| j | 1 | 2 | 3 | 4 | 5 | 6 | 7 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 1 | $\infty$ | 0 | 90 | 10 | 30 | 6 | 54 | $(-3)$ |
| 2 | 0 | $\infty$ | 73 | 38 | 17 | 12 | 30 | $(-4)$ |
| 3 | 29 | 1 | $\infty$ | 20 | 0 | 12 | 9 | $(-16)$ |
| 4 | 32 | 83 | 73 | $\infty$ | 49 | 0 | 84 | $(-7)$ |
| 5 | 3 | 21 | 63 | 8 | $\infty$ | 0 | 32 | $(-25)$ |
| 6 | 0 | 85 | 15 | 43 | 89 | $\infty$ | 4 | $(-3)$ |
| 7 | 18 | 0 | 7 | 1 | 58 | 13 | $\infty$ | $(-26)$ |
|  |  |  |  |  |  |  | reduced:84 |  |

A Reduced Cost Matrix.

## The traveling salesperson optimization problem

| $\mathrm{i}^{\mathrm{j}}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\infty$ | 0 | 83 | 9 | 30 | 6 | 50 |
| 2 | 0 | $\infty$ | 66 | 37 | 17 | 12 | 26 |
| 3 | 29 | 1 | $\infty$ | 19 | 0 | 12 | 5 |
| 4 | 32 | 83 | 66 | $\infty$ | 49 | 0 | 80 |
| 5 | 3 | 21 | 56 | 7 | $\infty$ | 0 | 28 |
| 6 | 0 | 85 | 8 | 42 | 89 | $\infty$ | 0 |
| 7 | 18 | 0 | 0 | 0 | 58 | 13 | $\infty$ |

Table 6-5 Another Reduced Cost Matrix.

## Lower bound

- The total cost of $84+12=96$ is subtracted. Thus, we know the lower bound of feasible solutions to this TSP problem is 96 .


## The traveling salesperson optimization problem

- Total cost reduced: $84+7+1+4=96$ (lower bound) decision tree:


The Highest Level of a Decision Tree.

- If we use arc 3-5 to split, the difference on the lower bounds is $17+1=18$.


## Heuristic to select an arc to split the solution space

- If an arc of cost $0(x)$ is selected, then the lower bound is added by 0 ( x ) when the arc is included.
- If an arc $\langle i, j\rangle$ is not included, then the cost of the second smallest value (y) in row i and the second smallest value (z) in column j is added to the lower bound.
- Select the arc with the largest $(y+z)-x_{1}$

We only have to set c4-6 to be $\infty$.

## For the right subtree (Arc 4-6 is excluded)

| $\mathrm{i}^{\mathrm{j}}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\infty$ | 0 | 83 | 9 | 30 | 6 | 50 |
| 2 | 0 | $\infty$ | 66 | 37 | 17 | 12 | 26 |
| 3 | 29 | 1 | $\infty$ | 19 | 0 | 12 | 5 |
| 4 | 32 | 83 | 66 | $\infty$ | 49 | $\infty$ | 80 |
| 5 | 3 | 21 | 56 | 7 | $\infty$ | 0 | 28 |
| 6 | 0 | 85 | 8 | 42 | 89 | $\infty$ | 0 |
| 7 | 18 | 0 | 0 | 0 | 58 | 13 | $\infty$ |

## For the left subtree (Arc 4-6 is included)

| i | 1 | 2 | 3 | 4 | 5 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\infty$ | 0 | 83 | 9 | 30 | 50 |
| 2 | 0 | $\infty$ | 66 | 37 | 17 | 26 |
| 3 | 29 | 1 | $\infty$ | 19 | 0 | 5 |
| 5 | 3 | 21 | 56 | 7 | $\infty$ | 28 |
| 6 | 0 | 85 | 8 | $\infty$ | 89 | 0 |
| 7 | 18 | 0 | 0 | 0 | 58 | $\infty$ |

A Reduced Cost Matrix if Arc 4-6 is included.

1. $4^{\text {th }}$ row is deleted.
2. $6^{\text {th }}$ column is deleted.
3. We must set c6-4 to be $\infty$. (The reason will be clear later.)

## For the left subtree

- The cost matrix for all solution with arc 4-6:

| j | 1 | 2 | 3 | 4 | 5 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i |  |  |  |  |  |  |
| 1 | $\infty$ | 0 | 83 | 9 | 30 | 50 |
| 2 | 0 | $\infty$ | 66 | 37 | 17 | 26 |
| 3 | 29 | 1 | $\infty$ | 19 | 0 | 5 |
| 5 | 0 | 18 | 53 | 4 | $\infty$ | 25 |
| 6 | 0 | 85 | 8 | $\infty$ | 89 | 0 |
| 7 | 18 | 0 | 0 | 0 | 58 | $\infty$ |
| A Reduced Cost Matrix for that in Table 6-6. |  |  |  |  |  |  |

- Total cost reduced: 96+3 = 99 (new lower bound)


## Upper bound

- We follow the best-first search scheme and can obtain a feasible solution with cost C .
- C serves as an upper bound of the optimal solution and many branches may be terminated if their lower bounds are equal to or larger than C.


Fig 6-26 A Branch-and-Bound Solution of a Traveling Salesperson Problem.

## Preventing an arc

- In general, if paths $i_{1}-i_{2}-\ldots-i_{m}$ and $j_{1}-j_{2}-\ldots-j_{n}$ have already been included and a path from $i_{m}$ to $j_{1}$ is to be added, then path from $j_{n}$ to $i_{1}$ must be prevented (by assigning the cost of $j_{n}$ to $i_{1}$ to be $\infty$ )
- For example, if 4-6, 2-1 are included and 1-4 is to be added, we must prevent 6-2 from being used by setting $c 6-2=\infty$. If $6-2$ is used, there will be a loop which is forbidden.


## Application \& Scope of research

- Application: Vehicle route
- Scope of research : an algorithm which improves time complexity of TSP problem


## Assignment

Q.1) What are different search to find feasible solution of a problem?
Q.2) Which search is useful to find optimal solution of a given problem.
Q.3) Explain branch \& bound design strategy.

